Buscador :
Volver al Menú
| : /
Vote:
Resultados:
0 Votos
MARZO 2024 - Volumen: 99 - Páginas: 201-207
¿Le interesa este artículo? Puede comprar el artículo a través de la plataforma de pago de PayPal o tarjeta de crédito (VISA, MasterCard,...) por 20 €.
Burn-in testing is an effective method for detecting early faults in electronic products before they reach the market. This test has a high cost due to lengthy test time on a test bench. In this paper, we propose N-BIR (Numeric optimization approach for power electronic Burn-In testing time Reduction), an algorithm capable of predicting the burn-in test temperature of power electronic converters, intending to shorten the duration of such tests. This algorithm optimizes by least squares a theoretical model of the system, using as data a fraction of the total burn-in test. Moreover, not only is it capable of making accurate predictions, but it also accompanies them with a prediction interval, so that the algorithm itself can quantify how confident it is of its predictions. We show that using 40% of a conventional rolling test total, the proposed algorithm outperforms several of today's most common Machine Learning algorithms. Furthermore, we show that it can reduce burning time by 50% to 60% by making accurate predictions, which makes it possible to identify a significant portion of converters that don't require full testing, ultimately lowering costs and boosting productivity.Keywords: Burn-in temperature prediction, Burn-in time reduction, Levelized Cost of Energy, Machine Learning, Electronic Power Converter, Reliability.
Compártenos:
© Revista de Ingeniería Dyna 2006 - Publicaciones Dyna, S.L & Co-Publisher UK Zhende Publishing Limited
Órgano Oficial de Ciencia y Tecnología de la Federación de Asociaciones de Ingenieros Industriales
Dirección: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY
Email: dyna@revistadyna.com
Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil
Nombre: *
Apellido 1: *
Apellido 2:
Email: *