Buscador :
Volver al Menú
Vote:
Resultados:
0 Votos
ENERO 2023 - Volumen: 98 - Páginas: 91-97
¿Le interesa este artículo? Puede comprar el artículo a través de la plataforma de pago de PayPal o tarjeta de crédito (VISA, MasterCard,...) por 20 €.
La detección de granos de trigo no sanos en la compra tradicional de trigo se ve afectada por factores humanos, lo que resulta en una clasificación de trigo errónea. En la actualidad, el reconocimiento informático de los granos de trigo tiene generalmente una baja precisión, y se pueden reconocer pocos tipos de granos de trigo. Para reconocer de forma rápida, precisa y objetiva los granos de trigo, este estudio propone una estrategia mejorada del método de reconocimiento de granos de trigo basada en el aprendizaje profundo. En primer lugar, se etiquetó un gran número de imágenes de trigo recogidas, y los granos de trigo se dividieron en cinco categorías: granos perfectos, granos rotos, impurezas, granos germinados y granos mohosos. En segundo lugar, se propusieron las estrategias mejoradas de los modelos VggNet-16, ResNet-34, EfficientNet-b2, DenseNet121 y Vit. Basándose en el método de detección de objetivos en dos etapas, el modelo de red mejorado se utilizó para detectar los granos de trigo. Además, se verificó la precisión del modelo realizando pruebas comparativas. Los resultados muestran que la estructura de la red mejorada es obviamente más eficaz, y la tasa de precisión más alta de la identificación de los granos de trigo es del 96%. La precisión, la tasa de recuperación y la puntuación F1 de los modelos VggNet-16-W, ResNet-34-W, EfficientNet-b2-W y DenseNet121-W son superiores al 97%. Este estudio proporciona una buena referencia para la detección rápida y precisa de la calidad del trigo.Palabras clave: aprendizaje profundo; reconocimiento de imágenes; estrategias mejoradas; modelo de red; granos de trigo
Compártenos:
© Revista de Ingeniería Dyna 2006 - Publicaciones Dyna, S.L & Co-Publisher UK Zhende Publishing Limited
Órgano Oficial de Ciencia y Tecnología de la Federación de Asociaciones de Ingenieros Industriales
Dirección: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY
Email: dyna@revistadyna.com
Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil
Nombre: *
Apellido 1: *
Apellido 2:
Email: *