Search engine :
Return to the menu
| : /
Vote:
Results:
0 Votes
JANUARY 2022 - Volume: 97 - Pages: 35-38
Download pdf
The popularity of the use of computational tools such as artificial intelligence has been increasing in recent years, and its importance in medicine is a fact. This field has benefited greatly thanks to the incorporation of more effective and faster methodologies in the medical diagnosis and registration processes. In the present work, the classification of images related to three diseases: Tuberculosis, Glaucoma and Parkinson's is carried out. We used deep learning and the RESNET50 convolutional neural network to extract classification characteristics, and then perform the classification based on standard methods, such as support vector machines, Naïve Bayes, and Centroid-based classifier, which are incorporated into two scenarios (cross validation; training and test sets). The classifier's performance is evaluated quantitatively using three evaluation metrics. The results obtained support the feasibility of the proposed methodology and its potential to improve medical diagnosis.
Share:
© Engineering Journal Dyna 2006 - Publicaciones Dyna, S.L
Official Science and Technology Body of the Federation of Industrial Engineers' Associations
Address: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY
Email: office@revistadyna.com
Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil
Name: *
Surname 1: *
Surname 2:
Email: *