PAPER SENDING

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

REVISTA DYNA NEW TECHNOLOGIES REVISTA DYNA NEW TECHNOLOGIES

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy and Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation database
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Search Content
    • Volumes / Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News New Technologies
    • Newsletter DNT
  • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
  • Sign in
    • Privacy Policy

Return to the menu

  • Homepage
  • Papers
  • Search Content

Search Content

×

 |    : /

Vote:

Results: 

0 points

 0  Votes

RESIDUAL NEURAL NETWORKS FOR MONOCULAR DEPTH ESTIMATION IN NATURAL ENVIRONMENTS

 |    : /

JANUARY-DECEMBER 2024   -  Volume: 11 -  Pages: [11P.]

DOI:

https://doi.org/10.6036/NT11086

Authors:

ALEXANDRA ROMERO LUGO
-
ANDREA MAGADAN SALAZAR
-
JORGE FUENTES PACHECO
-
RAUL PINTO ELIAS
-
NIMROD GONZALEZ FRANCO

Disciplines:

  • INFORMATION TECHNOLOGY AND KNOWLEDGE (INTELIGENCIA ARTIFICIAL Y SIMULACION )

Downloads:   30

How to cite this paper:  
Download pdf

Download pdf

Received Date :   20 October 2023

Reviewing Date :   25 October 2023

Accepted Date :   8 January 2024


Key words:
Deep Learning, Residual Networks, Monocular Depth Estimation, image training, dataset, Aprendizaje Profundo, Redes Residuales, Estimación de Profundidad Monocular
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

ABSTRACT:
Presently, depth estimation research has focused on deep learning, mainly on monocular depth estimation, because this technique has proven to be an excellent alternative for methods that use expensive sensors or require high computational consumption, providing higher performance and accuracy. Despite there being a large number of works, most have focused on indoor and urban datasets. Due to this, we review the variants of the residual networks being trained with images of natural environments with a high presence of vegetation.
We proposed a new dataset specialized in natural environments using the AirSim simulation to evaluate the variants of the ResNet and ResNeXt families and verify that these can be used to detect leaves and thin branches with their corresponding depth. We conclude that a deeper residual neural network is not always the best option for monocular depth estimation. It is necessary to consider the type of network architecture, computing resources available, and the content and size of the data set.

Keywords: Deep Learning, Residual Networks, Monocular Depth Estimation

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search Content

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© DYNA New Technologies Journal

EDITORIAL: Publicaciones DYNA SL

Adress: Alameda Mazarredo 69 - 2º, 48009-Bilbao SPAIN

Email: info@dyna-newtech.com - Web: http://www.dyna-newtech.com

 

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy and Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • Journal
    • The Journal and its bodies
      • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation database
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Papers
    • Search Content
    • Volumes / Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News
    • News New Technologies
    • Newsletter DNT
  • Advertising
    • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
  • Sign in
    • Sign in
    • Privacy Policy

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...