PAPER SENDING

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

REVISTA DYNA NEW TECHNOLOGIES REVISTA DYNA NEW TECHNOLOGIES

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy and Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation database
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Search Content
    • Volumes / Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News New Technologies
    • Newsletter DNT
  • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
  • Sign in
    • Privacy Policy

Return to the menu

  • Homepage
  • Papers
  • Search Content

Search Content

×

 |    : /

Vote:

Results: 

4 points

 3  Votes

COMPARISON AND EXPLANABILITY OF MACHINE LEARNING MODELS IN PREDICTIVE SUICIDE ANALYSIS

 |    : /

JANUARY-DECEMBER 2024   -  Volume: 11 -  Pages: [10P.]

DOI:

https://doi.org/10.6036/NT11028

Authors:

DANIEL ALEJANDRO BARAJAS ARANDA
-
MIGUEL ANGEL SICILIA URBAN
-
MARIA DOLORES TORRES SOTO
-
AURORA TORRES SOTO

Disciplines:

  • Computer Sciences (ARTIFICIAL INTELLIGENCE / INTELIGENCIA ARTIFICIAL )

Downloads:   6

How to cite this paper:  
Download pdf

Download pdf

Received Date :   27 July 2023

Reviewing Date :   2 August 2023

Accepted Date :   12 February 2024


Key words:
Predicción de comportamiento suicida, Modelos de aprendizaje automático, Redes neuronales, Regresión logística, Árboles de decisión, Análisis de explicabilidad, Intervención en salud, Suicidal behavior prediction, Machine learning models, Neural network, Logistic regression, Decision tres, Explainability análisis, Healthcare intervention
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

ABSTRACT
In this comparative study of machine learning models for predicting suicidal behavior, three approaches were evaluated: neural network, logistic regression, and decision trees. The results revealed that the neural network showed the best predictive performance, with an accuracy of 82.35%, followed by logistic regression (76.47%) and decision trees (64.71%). Additionally, the explainability analysis revealed that each model assigned different importance to the features in predicting suicidal behavior, highlighting the need to understand how models interpret features and how they influence predictions.
The study provides valuable information for healthcare professionals and suicide prevention experts, enabling them to design more effective interventions and better understand the risk factors associated with suicidal behavior. However, it is noted the need to consider other factors, such as model interpretability and its applicability in different contexts or populations. Furthermore, further research and validation in different datasets are recommended to strengthen the understanding and applicability of the models in different contexts.
In summary, this study significantly contributes to the field of predicting suicidal behavior using machine learning models, offering a detailed insight into the strengths and weaknesses of each approach and highlighting the importance of model interpretation for better understanding the underlying factors of suicidal behavior.
Key words: Suicidal behavior prediction, Machine learning models, Neural network, Logistic regression, Decision tres, Explainability análisis, Healthcare intervention

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search Content

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© DYNA New Technologies Journal

EDITORIAL: Publicaciones DYNA SL

Adress: Alameda Mazarredo 69 - 2º, 48009-Bilbao SPAIN

Email: info@dyna-newtech.com - Web: http://www.dyna-newtech.com

 

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy and Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • Journal
    • The Journal and its bodies
      • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation database
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Papers
    • Search Content
    • Volumes / Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News
    • News New Technologies
    • Newsletter DNT
  • Advertising
    • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
  • Sign in
    • Sign in
    • Privacy Policy

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...