## A NEW IDENTIFICATION METHOD OF THE TRANSFORMER INRUSH CURRENT BASED ON IMPROVED HILBERT-HUANG TRANSFORM ALGORITHM UN NUEVO MÉTODO DE IDENTIFICACIÓN DE LA CORRIENTE DE ARRANQUE DEL TRANSFORMADOR BASADO EN UN ALGORITMO DE TRANSFORMACIÓN HILBERT-HUANG MEJORADO

## SUPPLEMENTARY MATERIAL



Fig.2. Waveform of three-phase inrush current.(a) A-phase inrush current. (b) B-phase inrush current. (c)



Fig.4. Waveform of internal fault current.

(a)*Current of single-phase ground fault.* (b) *Current of inter-phase short circuit* (c)*Current of three-phase short circuit* 



Fig.6. First IMF component obtained from B-phase inrush current and its instantaneous frequency. (a) First IMF component. (b) Instantaneous frequency



Fig.7. First IMF component obtained from C-phase inrush and its instantaneous frequency. (a) First IMF component. (b) Instantaneous frequency



Fig.9. First IMF component and its instantaneous frequency obtained from inter-phase (A-B phase) short circuit. (a) First IMF component. (b) Instantaneous frequency



*Fig.10. First IMF component obtained from three-phase short circuit t and its instantaneous frequency. (a) First IMF component. (b) Instantaneous frequency* 

| Closing angle | Time intervals of catastrophe<br>points in instantaneous<br>frequency of A-phase (t/ms) | Time intervals of catastrophe<br>points in instantaneous<br>frequency of B-phase (t/ms) | Time intervals of catastrophe<br>points in instantaneous<br>frequency of C-phase (t/ms) |
|---------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 0°            | 5.3-8.7                                                                                 | 7.7–12.2                                                                                | 4.6–9.1                                                                                 |
| $60^{\circ}$  | 3.7–11.9                                                                                | 8.7–11.1                                                                                | 9.8–10.2                                                                                |
| 120°          | 9.4–11                                                                                  | 5.3–11.5                                                                                | 7.2–12.2                                                                                |
| 180°          | 9.5-11.8                                                                                | 9.2–12.2                                                                                | 3.7–11.7                                                                                |
| 240°          | 5.7–9.5                                                                                 | 4.4–12.3                                                                                | 9.5-10.8                                                                                |
| 300°          | 9.6-10.7                                                                                | 3.8-8.6                                                                                 | 4.8-9.7                                                                                 |

Table III. Time intervals of two adjacent catastrophe points in instantaneous frequency corresponding to inrush current in different closing phase angles