Buscador :
Volver al Menú
| : /
Vote:
Resultados:
2 Votos
MAYO 2021 - Volumen: 96 - Páginas: 270-275
¿Le interesa este artículo? Puede comprar el artículo a través de la plataforma de pago de PayPal o tarjeta de crédito (VISA, MasterCard,...) por 20 €.
La industria 4.0 mejora de manera considerable la productividad a través de la recopilación y análisis de datos a tiempo real. Esto, combinado a la funcionalidad de acceso remoto, y el procesamiento en la nube que permite Internet de las cosas IoT, genera información que optimiza los procesos y la toma de decisiones. También conlleva un gran crecimiento de nuevas redes y sistemas con características especiales, lo que hacen que sean vulnerables a diferentes ataques. De aquí surgen nuevas necesidades en seguridad de red. Para mejorar la seguridad de un sistema IoT de manera transparente, se propone el desarrollo de un prototipo de sistema de detección de intrusiones IDS (Intrusion Detection System), que detecta anomalías en entornos IoT que utilizan el protocolo MQTT (Message Queuing Telemetry Transport), ampliamente utilizado en estos sistemas. Para ello, se utiliza un conjunto de datos (dataset) de un sistema IoT con diferentes ataques sobre el protocolo MQTT. Con este dataset se entrena un modelo de machine learning, que se implementa en el IDS que toma las tramas de red a tiempo real del sistema para clasificarlas y detectar los diferentes ataques.Palabras clave: IoT, industria 4.0, ciberseguridad, IDS, protocolo MQTT, Machine Learning.
Compártenos:
© Revista de Ingeniería Dyna 2006 - Publicaciones Dyna, S.L & Co-Publisher UK Zhende Publishing Limited
Órgano Oficial de Ciencia y Tecnología de la Federación de Asociaciones de Ingenieros Industriales
Dirección: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY
Email: dyna@revistadyna.com
Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil
Nombre: *
Apellido 1: *
Apellido 2:
Email: *